Research Lessons Learned by an Engineer Turned Hydrogeologist

Neil R. Thomson Department of Civil and Environmental Engineering University of Waterloo

XVII CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS

Engineering

- **Currently an engineering professor**
- □ 25+ years as a researcher
- **Groundwater systems**
- Contaminant fate and remediation
- □ Modelling
- Bench-scale experiments
- **Given Field experiments**

Engineering

"...is the science, skill, and profession of acquiring and applying scientific, economic, social, and practical knowledge...

to design and also build structures, machines, devices, systems, materials and processes."

Professional

Licensed

Duty to ensure public safety

Training

UNIVERSITY OF

Maths

- □ Basic science
- **D** Engineering science
- **Engineering design**
- **Economics**
- □ Social impact

Training

Training

UNIVERSITY OF

Civil engineering

- Materials
- **Steel**
- **Concrete**
- **Transportation**
- **Structures**
- □ Water treatment
- **Soil mechanics**

Engineering approach

UNIVERSITY OF

All can be designed
Control over most aspects
Factor of safety

□ Size beam to carry design load

Environmental systems

Contamination

Pathway...

Perspective

"Success is not a good teacher, failure makes you humble"

Shah Rukh Khan

Modelling is fun...

UNIVERSITY OF

rate of change of mass

UNIVERSITY OF

 $\frac{\mathrm{d} C}{\mathrm{d} t} + \lambda(t)C = S(t)$

which has the solution

$$C(t)e^{\int \lambda(t)dt} = \int S(t)e^{\int \lambda(t)dt}dt + K$$

$$C(t) = \int_{t_o}^t h(t, t') \left[S(t') + C_o \delta(t' - t_o) \right] dt'$$

where

$$h(t,t') = e^{-\lambda(t-t')}$$

is the Green's function for the ODE

$$\frac{\mathrm{d} C}{\mathrm{d} t} + 1C = 1e^{-2(t-t_1)}H(t-t_1) \quad \text{with} \ C(0) = 0.5$$

WATERLOO

1.2E-4 1.0E-4 Concentration (kg/m3) Lake I 8.0E-5 6.0E-5 Lake 2 4.0E-5 2.0E-5 0.0E+0 160 20 40 120 140 180 60 80 100 200 0 Time (d)

Monte Carlo Method

Advance complexity + Solve bigger problems

$$\begin{split} & I_{\Psi_{0}} = \int_{R} \left\{ -\Psi \delta^{T} \left[m\Psi_{0} \cdot \nabla \mathbf{u}_{0} + m\mathbf{u}_{0} \cdot \nabla \Psi_{0} + mf_{c} \hat{k} \times \Psi_{0} \right. \\ & + \rho_{w} C_{w} \left[\frac{\mathbf{u}_{0} - \mathbf{u}_{w_{0}}}{\partial \mathbf{u}^{T}} \Psi_{0} \mathbf{B}_{w} (\mathbf{u}_{0} - \mathbf{u}_{w_{0}}) \right. \\ & + \rho_{w} C_{w} \left[\mathbf{u}_{0} - \mathbf{u}_{w_{0}} \right] \mathbf{B}_{w} \Psi_{0} \right] \\ & + \psi \delta \left\{ \left[\frac{\partial}{\partial x_{i}} \left\{ \frac{\partial k_{iyr}}{\partial u_{q}} \psi_{0}, \frac{\partial u_{r}}{\partial x_{s}} + k_{yrs} \frac{\partial \Psi_{0}}{\partial x_{s}} \right\} \right] \right\} dR \quad (C7) \end{aligned} \right. \\ & \text{for any product one of the set of$$

where

$$\psi_1 = \frac{\partial u}{\partial \alpha_l} \qquad \psi_2 = \frac{\partial h}{\partial \alpha_l} \qquad \psi_3 = \frac{\partial A}{\partial \alpha_l} \qquad \psi_0 = \frac{\partial u_0}{\partial \alpha_l}$$

$$d^h = 1 + UA - 1 \qquad (C9)$$

$$d^A = 1 + U[A - 1] \qquad (C10)$$

Equations (C9) and (C10) represent portions of (8) and (9), respectively. In (C4)-(C8) the icc mass, denoted by m, has been replaced by $m = \rho_i h$ (where ρ_i is the density of icc) only where the derivatives of the icc mass are required. This is valid substitution since the icc motion model is an integrated thickness model. Associated with the integrals embodied in (C3) are the following partial derivatives (with respect to α_i) of the initial and boundary conditions for both the momentum balance equation and the redistribution equations:

$$\psi_1 = \frac{\partial \mathbf{u}}{\partial \alpha_1} = \frac{\partial \hat{\mathbf{u}}}{\partial \alpha_1} \quad \text{on } \Gamma_1 \ \forall \ t \ge t_0 \tag{C11}$$

for equation (4),

$$\begin{aligned} \frac{\partial k_{ijrs}}{\partial u_q} \psi_1 &\frac{\partial u_r}{\partial x_s} + k_{ijrs} \frac{\partial \psi_1}{\partial x_s} \\ &+ \frac{\partial k_{ijrs}}{\partial h} (d^h \psi_2 + hU[A - 1]\psi_3) \frac{\partial u_r}{\partial x_s} \\ &+ \frac{\partial k_{ijrs}}{\partial A} d^A \psi_3 \frac{\partial u_r}{\partial x_s} + \frac{\partial k_{ijrs}}{\partial \alpha_l} \frac{\partial u_r}{\partial x_s} \\ &- \frac{1}{2} \delta_{ij} \frac{\partial P}{\partial h} (d^h \psi_2 + hU[A - 1]\psi_3) \\ &- \frac{1}{2} \delta_{ij} \frac{\partial P}{\partial A} d^A \psi_3 - \frac{1}{2} \delta_{ij} \frac{\partial P}{M \partial \alpha_l} \bigg|_{n_j} = \frac{\partial T_{n_j}}{\partial \alpha_l} \quad \text{ on } \Gamma_2 \ \forall \ l \ge t_0 \\ \end{aligned}$$
(C12)

for equation (5),

$$(\mathbf{u}\psi_2 d^h + \psi_1 h) \cdot \hat{n} = \frac{\partial \mathbf{u}\hat{h}}{\partial \alpha_l}$$
 on $\Gamma_4 \forall t > t_0$ (C13)

For equation (13),

$$(\mathbf{u}\psi_3 d^A + \psi_1 h) \cdot \hat{n} = \frac{\partial \mathbf{u} \widehat{A}}{\partial \alpha_l} \quad \text{on } \Gamma_4 \ \forall \ t > t_0 \tag{C14}$$

for equation (14),

$$\psi_2(t_0) = \partial h_0 / \partial \alpha_l \quad \text{on } \Omega \ \forall \ t \le t_0$$
 (C15)

for equation (11), and

$$\psi_3(t_0) = \frac{\partial A_0}{\partial \alpha_l} \quad \text{on } \Omega \ \forall \ t \le t_0 \tag{C16}$$

for equation (12).

Equations (C4)–(C7) may be manipulated with respect to the dependent variable (i.e., ψ_1 , ψ_2 , ψ_3 , and ψ_0) by the (C8) following operations: (1) integrate by parts for terms involving temporal derivatives, (2) use Green's first identity to

Regional Scale

~ 400,000 nodes

Model complexity

model reliability model complexity

Lesson learned - I

"the natural world is a complex system and we cannot predict its behaviour nor should we behave as we can with any certainty"

Lesson learned - 2

 Models can be very complex
 Demand more input than available
 Need to be grounded in observational data to appreciate the complexity of groundwater systems

Moving time...

Some things just confuse...

Capture zones

UNIVERSITY OF

Capture Zones...

capture zone type curves & other tools exist to help design & optimize wells

Dewatering systems

Dewatering System

Dewatering System

Organic compounds

GW Recycling

GW Recycling

Mass Balance

UNIVERSITY OF

40% of the injected mass (+ by products) was recovered....

Lesson learned - 3

□ Hard to engineer simple flow systems

Understanding groundwater flow is the key!

Transcends the practice

Geology controls...

CFB Borden

Porosity:	0.33
Bulk Density:	1.81 g/cm ³
Hydraulic Conductivity:	7x10 ⁻⁵ m/s
Depth to Water Table:	varies, 0 - 1.5 mbgs
Hydraulic Gradient:	mean 0.0039
Groundwater Velocity:	0.091 m/day

CFB Borden

UNIVERSITY OF

cm scale variations in hydraulic conductivity

In Situ Air Sparging

Injection of air

In situ air sparging

Air channel distribution

Field Setup

Air channel descriptions

UNIVERSITY OF

(a) Low/Periodic (b) Medium (c) High (d) Extreme (e) Volatile

Surface air channels

UNIVERSITY OF

Air channeling evident throughout

AT9 AT8 AT7 AT6 AT5 AT4 AT3 AT2 AT1 0.0 + + + + + + + + +65 + + + + +++ + + 0.5 - 60 + ++- 55 + + 1.0 + + - 50 + + - 45 + + 1.5 - 40 + + 4 Depth (m bws) Air Saturation (%) + + + + - 35 2.0 + + + + + + - 30 + + + + + + - 25 + + + + +÷ 2.5 + + + 20 + +- 15 3.0 + IAS₂ - 10 ++ + + - 5 3.5 + + + + 0 + + + + 4.0 5N 7N 11N **0N** 1N 2N 3N 4N 6N 8N 9N 10N South North Horizontal Distance (m)

Air Saturation: Cross-Borehole Ground Penetrating Radar

Lesson learned - 4

Subtle changes in sediment structure control many important processes

Be prepared for the unexpected & don't be surprised

Good ideas can stall...

Dipole Flow and Reactive Tracer Test (DFRTT) for Aquifer Parameter Estimation

Adaption of some early work by from Kabala and co-workers

- □ Hydraulic conductivity (K)
- Biodegradation properties
- **Oxidation/reduction capacity**
- □ Ion exchange capacity
- **Sorption properties**

Expected Behaviour

Observed behaviour

0.016 **Aquifer peak** 0.012 -ບິ 2 0.008 -Tail 0.004 -Skin peak 0 270 30 60 90 240 0 120 150 180 210 300 Time (min)

UNIVERSITY OF WATERLOO

Well skin

Observed behaviour

0.04 0.03 -Skin peak ບິ 2002 – 0.01 Aquifer peak? Tail 0 30 60 90 120 150 180 210 240 0 Time (min)

Observed Behaviour

Filter packed wells

Velocity in well skin

Conductivity detectors Relate arrive to velocity

Velocity in well skin

Alterations to the well skin WATERLOO

Added various drilling muds to temporary seal the skin

Lesson learned - 5

□ Simple things are hard to change

Cannot engineer the system!

Be patient...

good things will happen!

Contaminant treatment

UNIVERSITY OF

Coal tar creosote was emplaced below the water table in August 1991 (Year 0)

Mass loading

 $\dot{M} = \int q C dA$
Treatment details

- semi-passive pulse injection system
- 7-day intervals
- 6 episodes / 125 kg
- ~ 20 pore volumes

Short-term monitoring

UNIVERSITY OF

Compound	Pre	Post	Percent
	[mg/day]	[mg/day]	Change
naphthalene	750	310	-59
1-methylnaphthalene	200	120	-40
acenaphthylene	15	6	-58
biphenyl	84	71	-15
acenaphthene	430	200	-53
fluorene	110	51	-54
carbazole	61	18	-70
dibenzofuran	250	210	-16
phenanthrene	96	60	-37
anthracene	31	14	-55
fluoranthene	13	11	-11
pyrene	9	3	-63
Total	2048	1075	-47

Changes in mass load at fence line 150 days after treatment

Long-term monitoring

UNIVERSITY OF

Dibenzofuran

Lesson learned - 6

Groundwater systems are slow to respond
Not chemical reactors

Dealing with difficult problems...

Groundwater flow in fractured media

Problem

Fracture network

Single fracture

CMM

Fracture walls

3D void space

3-D flow

Velocity along profile

Solute transport

Advection - Dispersion - Diffusion

3-D flow

$t/t_{r} = 0.01$

$t/t_{r} = 0.1$

$t/t_{r} = 0.10$

 $t/t_{r} = 1.50$

UNIVERSITY OF

UNIVERSITY OF

 $t/t_{r} = 2.00$

UNIVERSITY OF

Lesson learned - 7

Fracture flow and transport not simulated as parallel plates
Breakdown complex problems

Example 8

Dealing with field work...

Winter field work

UNIVERSITY OF

Winter field work

UNIVERSITY OF

Lesson learned - 6

Perhaps work in Brazil?

Thanks to...

Many, many graduate students Invaluable colleagues Outstanding technicians

