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Engineering - 1 

q  Currently an engineering professor 
q  25+ years as a researcher 
q  Groundwater systems 
q  Contaminant fate and remediation 
q  Modelling 
q  Bench-scale experiments 
q  Field experiments 



Engineering - 1 

“…is the science, skill, and profession of 
acquiring and applying scientific, economic, 
social, and practical knowledge… 
  
to design and also build structures, machines, 
devices, systems, materials and processes.” 
 
q  Professional 
q  Licensed 
q  Duty to ensure public safety 



Training - 1 

q  Maths 
q  Basic science 
q  Engineering science 
q  Engineering design 
q  Economics 
q  Social impact  



Training - 1 



Training - 1 

Civil engineering 
q  Materials 
q  Steel 
q  Concrete 
q  Transportation 
q  Structures 
q  Water treatment 
q  Soil mechanics  



Engineering approach - 1 

q  All can be designed 
q  Control over most aspects 
q  Factor of safety 

q  Size beam to carry design load 



Environmental systems - 1 
High variability 
No control 
No factor of safety 



Sources 

Pathways 
Receptor 

Extraction 
Well 

Contamination 



Pathway…- 1 

engineer 

hydrogeologist 

Some 
Lessons 
Learned 



Perspective - 1 

“Success is not a good teacher,   
 failure makes you humble” 

 
Shah Rukh Khan 



Example 1- 1 

Modelling is fun… 



 

inflow, Q(t) 
Cin(t) 

reaction (decay) 
RM  

outflow, Q(t) 
 
 

OUTM  
concentration, C(t) 

volume, V 
settling area, AS  
mean depth, H 

settling 
SM  

loading, W(t) INM  

Well-mixed systems- 1 
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Well-mixed systems- 1 
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 is the Green’s function 
for the ODE 

Well-mixed systems- 1 
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Well-mixed systems- 1 



 

W1 

Q0 
Q12 

Well-mixed systems- 1 

<20 µg/L  

Lake 1 Lake 2 

Release of contaminant 
into Lake 1 



Well-mixed systems- 1 

Lake 1 

Lake 2 



Model
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Well-mixed systems- 1 

? ? ? 

Lake 
system 

Monte Carlo Method 



Well-mixed systems- 1 

20 realizations 



Well-mixed systems- 1 



Well-mixed systems 1 

Realistic? 



Advance  
complexity 
+ 
Solve bigger 
problems 



Finite Element Model 

~ 400,000 nodes!

Regional Scale 



Model complexity 

model complexity 
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Lesson learned - 1 

“the natural world is a complex 
system and we cannot predict its 
behaviour  
 nor should we behave as we can 
with any certainty” 

 
 



Lesson learned - 2 

q Models can be very complex 
q Demand more input than 

available 
q Need to be grounded in 

observational data to appreciate 
the complexity of groundwater 
systems 

 
 
  



Moving time…- 1 



Example 2- 1 

Some things just confuse… 



Capture 
Zones... 
 
 
capture zone type 
curves & other 
tools exist to help 
design & optimize 
wells 
  

 

(from Bedient et al.,  1999) 

Capture zones 



Dewatering systems 



Dewatering 
System 



Dewatering System 



Organic compounds 

DNAPL release

residual
pure phase pool

continuous  pure phasediscontinuous pure phase

top of bedrock



well well 

GW Recycling 
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GW Recycling- 1 



Mass Balance - 1 

40% of the injected mass (+ by products) was 
recovered…. 
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Lesson learned - 3 

q Hard to engineer simple flow systems 

q Understanding groundwater flow is 
the key! 

q Transcends the practice 



Example 3- 1 

Geology controls… 



CFB Borden- 1 

Porosity:    0.33 

Bulk Density:   1.81 g/cm3 

Hydraulic Conductivity:  7x10-5 m/s 

Depth to Water Table:  varies, 0 - 1.5 mbgs 

Hydraulic Gradient:  mean 0.0039 

Groundwater Velocity:  0.091 m/day 



CFB Borden- 1 

cm scale variations in hydraulic conductivity 



In Situ Air Sparging 



In situ air sparging 

  

Injection of air 



Ji et al., GWMR, 13(4): 115-126 

Air channel distribution 
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(b) Medium (c) High (d) Extreme (e) Volatile (a) Low/Periodic 

Air channel descriptions 
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Lesson learned - 4 

q Subtle changes in sediment structure 
control many important processes 

q Be prepared for the unexpected & 
don’t be surprised 

 



Example 4- 1 

Good ideas can stall… 
 



DFRTT - 1 

Dipole Flow and Reactive Tracer Test (DFRTT) 
for Aquifer Parameter Estimation 

Adaption of some early work by 
from Kabala and co-workers 



DFRTT - 1 
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DFRTT - 1 

q  Hydraulic conductivity (K) 
q  Biodegradation properties 
q  Oxidation/reduction capacity  
q  Ion exchange capacity 
q  Sorption properties 



DFRTT - 1 
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DFRTT - 1 



DFRTT - 1 



Expected Behaviour - 1 

Aquifer peak 

Tail 



Observed behaviour - 1 

Aquifer peak 

Skin peak 

Tail 



Well skin - 1 

packer 

extraction 
chamber 

injection chamber 

disturbed 
zone or  
well skin 

 
the presence of a well skin 
affects the shape of the 
flow lines  



Observed behaviour - 1 

Skin peak 

Tail Aquifer peak? 



Observed Behaviour - 1 

Aquifer peak 

Skin peak 
Tail 



Filter packed wells - 1 



Velocity in well skin - 1 

q  Conductivity detectors 
q  Relate arrive to velocity 



Velocity in well skin - 1 

~100 m/day! 
Detector 1 

Detector 2 



Alterations to the well skin -  

12 cm 

12 cm 

9.5 cm 

Inflation Line Injection Line 

Injection 
Outlet 

Added various 
drilling muds 
to temporary 
seal the skin 



Lesson learned - 5 

q Simple things are hard to change 

q Cannot engineer the system! 
 
 

 
  



Example 6- 1 

Be patient…  
 
good things will happen! 



Coal tar creosote was emplaced below the 
water table in August 1991 (Year 0) 

1.7 m 

0.5 m 
2 m 

1 m 

GW Flow 

Contaminant treatment - 1 



Initial 
Plume 
Monitoring 

Year 1, 2, 4, 10 
 
60-180 multilevel wells 
 
700-2500 samples/episode 



 

  Concentrations along 
  Longitudinal Cross-Section 

 



 

Concentrations at the 3-m 
Fence line 

 



[years]

[m
g/
da
y]

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

Dibenzofuran 

dACM ∫= q

Mass loading - 1 



§  semi-passive pulse injection system 
§  7-day intervals 
§  6 episodes / 125 kg 
§  ~ 20 pore volumes  

Treatment details- 1 



Semi-Passive 
Pulse Injection 
Concept Chemical 



Chemical 

Semi-Passive 
Pulse Injection 
Concept 



Changes in 
mass load  
at fence line 
150 days after 
treatment 

Compound Pre Post Percent
[mg/day] [mg/day] Change

naphthalene 750 310 -59
1-methylnaphthalene 200 120 -40
acenaphthylene 15 6 -58
biphenyl 84 71 -15
acenaphthene 430 200 -53
fluorene 110 51 -54
carbazole 61 18 -70
dibenzofuran 250 210 -16
phenanthrene 96 60 -37
anthracene 31 14 -55
fluoranthene 13 11 -11
pyrene 9 3 -63

Total 2048 1075 -47

Short-term monitoring - 1 



Post-Treatment 
Plume 
Monitoring 

Year 1, 2, 4, 10 (pre) 
 
Year 11, 12, 14 (post) 
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Long-term monitoring - 1 



Lesson learned - 6 

q Groundwater systems are 
slow to respond 

q Not chemical reactors 
 
 

  



Example 7- 1 

Dealing with difficult 
problems… 



Groundwater 
 flow in 
 fractured 
 media 



Ground Surface 
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CMM 

 
Stylus 



Fracture walls 



3D void space 
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3-D flow 



3-D flow 



Velocity along profile 



Advection - Dispersion - Diffusion 

Solute transport 



3-D flow 
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Lesson learned - 7 

q Fracture flow and transport not 
simulated as parallel plates 

q Breakdown complex problems 
 
 

  



Example 8- 1 

Dealing with field work… 





Winter field work - 1 



Winter field work - 1 



Lesson learned - 6 

Perhaps work in Brazil? 



Thanks to…- 1 

q Many, many graduate students 
q Invaluable colleagues 
q Outstanding technicians 




