

MEIO AMBIENTE SUBTERRÂNEO

18 e 19 de novembro de 2019 Belo Horizonte • MG

TÍTULO DO TRABALHO APROVADO PARA APRESENTAÇÃO NO VI CONGRESSO INTERNACIONAL DE MEIO AMBIENTE SUBTERRÂNEO

Sobrenome, A.B.; **Sobrenome, C.D. (Negrito no apresentador);** Sobrenome, E.F., Sobrenome, G.H., Sobrenome, I.J.

Instituição/Empresa do apresentador.

Belo Horizonte, XX de Novembro de 2019

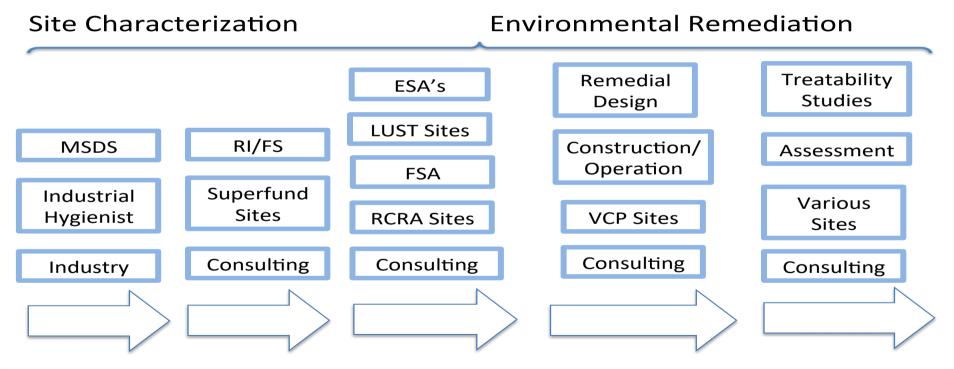
Groundwater Remediation Options for Emerging Contaminants

Michael A. Urynowicz, Ph.D., P.E.

Professor of Environmental Engineering Department of Civil & Architectural Engineering

Presentation Objectives

Presentation Objectives

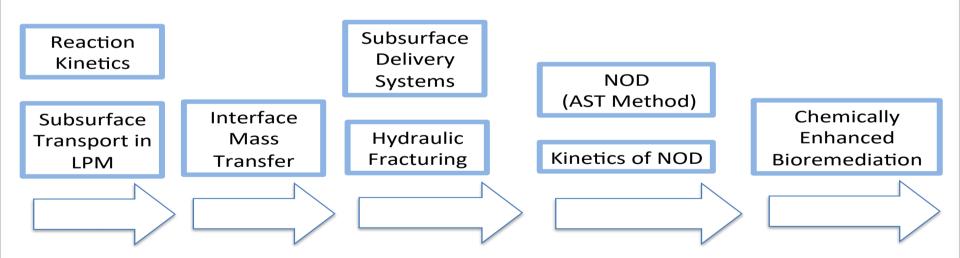

Presentation Outline

- The Last 30 Years
- Contaminants of Concern/Emerging
- Conceptual Site Model
- Remediation Technologies
- In-Situ Chemical Oxidation (ISCO)
- Delivery Methods
- PFAS Compounds/Sulfluramid
- Concluding Remarks

The Last 30 Years

(Consulting)

The Last 30 Years


(Research and Development)

Fate and Transport

1.1.7.

MEIO AMBIENTE

SUBTERRÂNEO

Contaminants of Concern

	Priority as a COC	riority as a COC Prevalence at U.S. NPL sites ^b		
Contaminant of concern	at U.S. hazardous waste sites (ATSDR ranking) ^a	Number of NPL sites with COC present	Sites with COC present as a % of total NPL sites	U.S. drinking water standards (μg/L)°
Arsenic	1	1,149	68%	10
Lead	2	1,272	76%	15
Mercury	3	714	49%	2
Vinyl chloride	4	616	37%	2
Polychlorinated biphenyls	5	500	31%	0.5
Benzene	6	1,000	59%	5
Cadmium	7	1,014	61%	5
Polycyclic aromatic hydrocarbons	8	600	42%	_
Benzo(a)pyrene	9	-	-	0.2

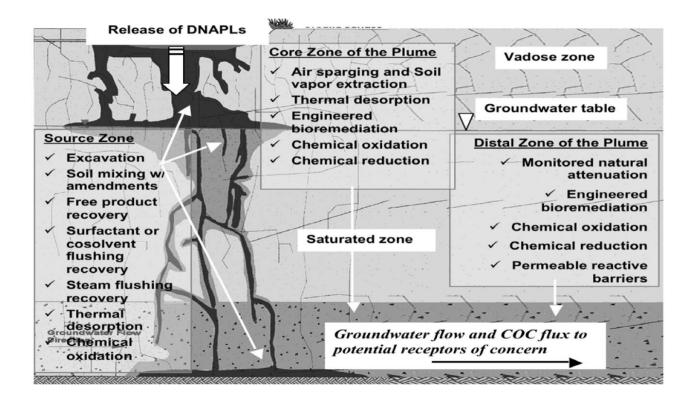
Contaminants of Concern

MEIO AMBIENTE

- MTBE
- Perchlorate
- 1,4-Dioxane
- Munitions Compounds
- 1,2,3-Trichloropropane

Emerging Contaminants???

- Pharmaceuticals
- Personal Care Products
- Lifestyle Products
- Microplastics
- Nanomaterials
- Disinfectants and Household Cleaners
- Disinfection By-Products
- Plasticizers
- Pesticides (Sulfluramid)
 - Flame Retardants (PFAS Compounds)


Site Conceptual Model

Remediation Technologies

Remediation Technologies

- Thermal Remediation Technologies
- Biological Remedies
- Monitored Natural Attenuation
- In Situ Chemical Oxidation (ISCO)
- In Situ Chemical Reduction (ISCR)
- Zero Valent Iron (ZVI)
- Electroenhanced Technologies
- Heat Enhanced Remediation
- Injectable Activated Carbon Amendments
- Surfactant Enhanced Remediation
- Phytoremediation

ELEVENTH INTERNATIONAL CONFERENCE ON REMEDIATION OF CHLORINATED AND RECALCITRANT COMPOUNDS

PRELIMINARY PROGRAM

APRIL 8-12, 2018 | PALM SPRINGS, CALIFORNIA

In Situ Chemical Oxidation is a recent application of a relatively old technology.

Water and Wastewater Treatment:

- Removal of soluble iron and manganese
- Color removal
- Taste and odor removal
- Disinfection

In Situ Chemical Oxidation for Groundwater Remediation

- In Situ Chemical Oxidation is a soil and/or groundwater remediation technology that uses
 oxidants to react with contaminants, resulting in their conversion into less harmful products.
- Key considerations for designing ISCO remediation projects include contaminant type, geochemical conditions, and the chemical delivery method.

Oxidant	Oxidant	Commercial Form	Activator	Reactive Species
Permanganate	KMnO ₄ or NaMnO ₄	Powder, liquid	None	MnO₄⁻
Hydrogen peroxide	H ₂ O ₂	Liquid	None, Fe(II), Fe(III)	OH [.] , O ₂ , HO ₂ [.] , HO ₂ ⁻
Ozone	O_3 (in air)	Gas	None	O ₃ , OH·
Persulfate	Na ₂ S ₂ O ₈	Powder	None, Fe(II), Fe(III), heat, H2O2, high pH	SO4 ²⁻ , SO4
Peroxone	H ₂ O ₂ plus O ₃ (in air)	Liquid, gas	O ₃	O ₃ , OH
Percarbonate	Na ₂ CO ₃ 1.5 H ₂ O ₂	Powder	Fe(II)	OH
Calcium peroxide	CaO ₂	Powder	None	$H_2O_2, HO_2;$

In Situ Chemical Oxidation for Groundwater Remediation

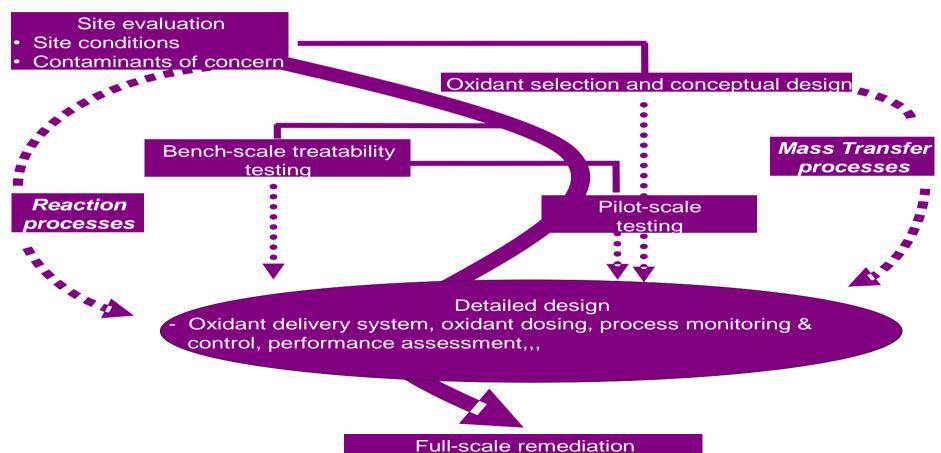
Reactive species	Formula	Standard reduction potential (V)	
Hydroxyl radical	OH	+2.8	
Sulfate radical	SO4-	+2.6	
Ozone	O ₃	+2.1	
Persulfate anion	S2082-	+2.1	
Hydrogen peroxide	H ₂ O ₂	+1.77	
Permanganate anion	MnO ₄ -	+1.7	
Perhydroxyl radical	HO ₂ .	+1.7	
Oxygen	O ₂	+1.23	
Hydroperoxide anion	HO ₂ -	-0.88	
Superoxide radical	O2-	-2.4	

In Situ Chemical Oxidation for Groundwater Remediation

> iegrist mi mpkin 5

Advantages include:

- Robust treatment method
- Can be implemented quickly
- Variety of oxidants and activation approaches
- Variety of delivery approaches
- Applicable to a range of subsurface conditions
- Relatively low mobilization costs
- Ability to couple with pre- and post-treatment methods
- Generally well-accepted by the regulatory community


In Situ Chemical Oxidation for Groundwater Remediation

Potential disadvantages include:

- Potential need for large amounts of chemical
- Resistance of some contaminants to oxidation
- Limited ability to penetrate low permeability soil and groundwater zones
- Potential for ISCO-induced effects (e.g., gas evolution, permeability reduction, secondary water quality effects)
- Potential for rebound of target contaminants
- Inability to treat contaminant source zones to the most stringent goal levels (e.g., MCLs)

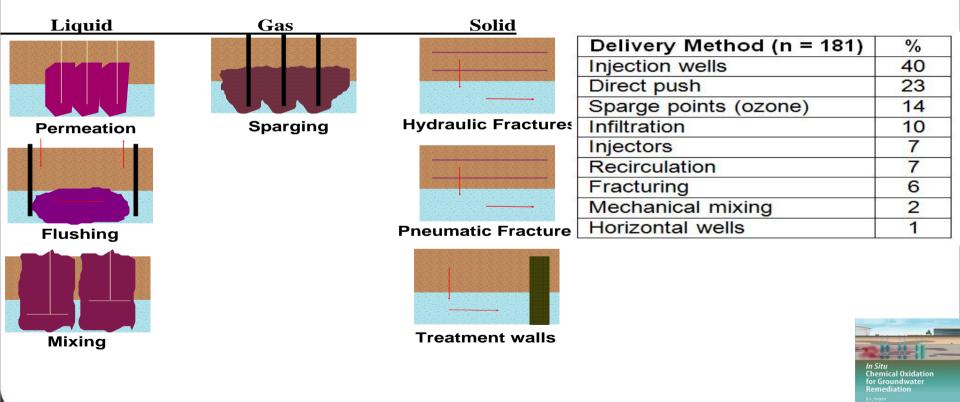
In Situ Chemical Oxidation for Groundwater Remediation 8.1 Seent

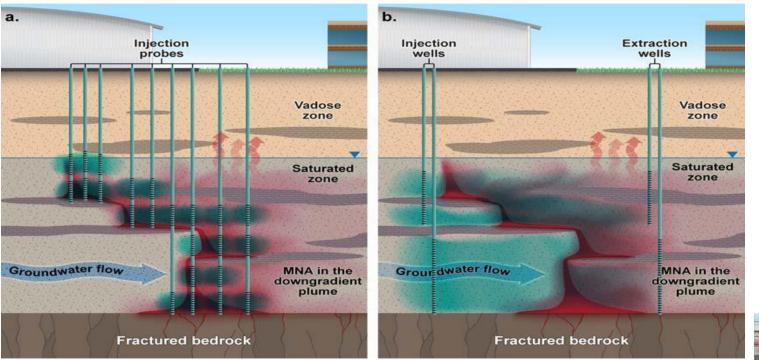
MEIO AMBIENTE

SUBTERRÂNEO

1.1.7.

Delivery Methods must overcome transport limitations and natural oxidant demand (NOD).


- Heterogeneity
- Low Permeability Media (LPM)
- NOD >> contaminants
- Kinetics


In Situ Chemical Oxidation for Groundwater Remediation

L. Siegrist I. Crimi J. Simplon ditors

In Situ Chemical Oxidation for Groundwater Remediation

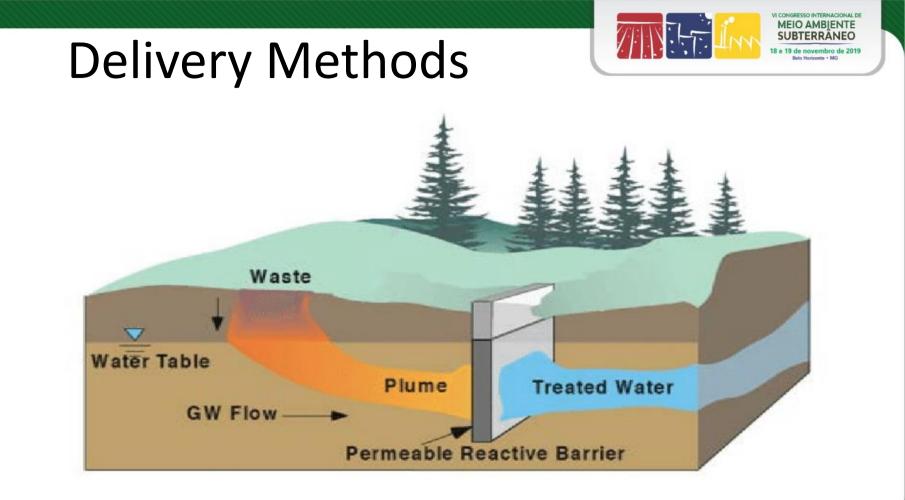
Parameters Monitored for Injection

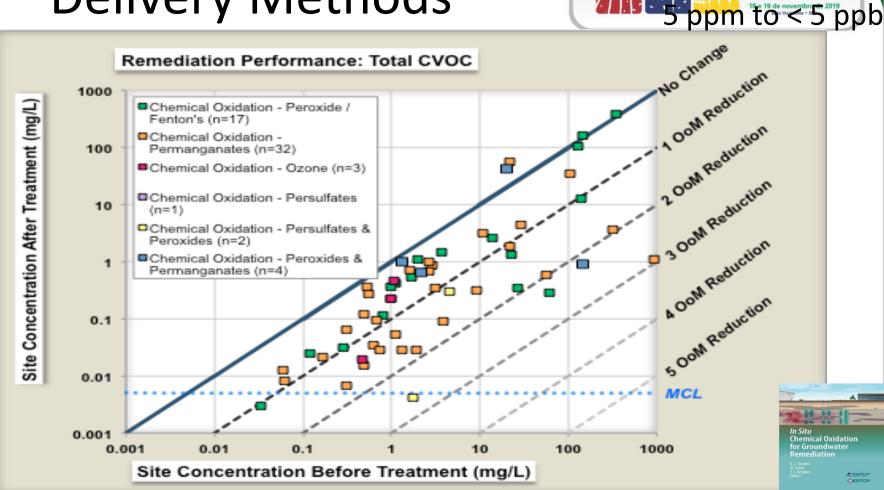
- Groundwater Level or Piezometric Head
- Injection Pressure and Flow Rate
- Injectate Concentration
- Volume of Oxidant Injected

In Situ Chemical Oxidation for Groundwater Remediation

©SEROP

R. L. Siegrist M. Crimi J. Simplon Editors





- Color; Temperature; Dissolved Oxygen
- Oxidation-reduction potential
- pH
- Specific Conductance
- Contaminants aquifer solids and groundwater
- Alkalinity; Manganese; Potassium or Sodium
- Sulfate; Chloride
- Iron; Site-specific redox-sensitive metals

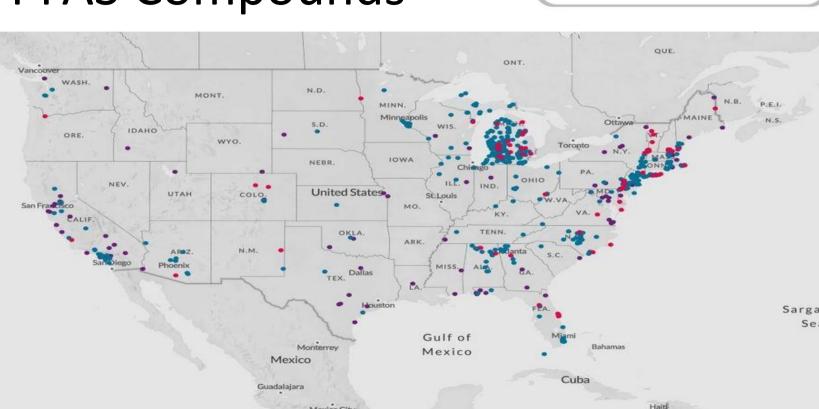
In Situ Chemical Oxidation for Groundwater Remediation

MEIO AMBIENTE SUBTERRÂNEO

- Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that includes PFOA, PFOS, GenX, and many other chemicals.
- PFAS have been manufactured and used in a variety of industries around the globe, including in the United States since the 1940s.
- There is evidence that exposure to PFAS can lead to adverse human health effects

Industrial / Commercial Sources

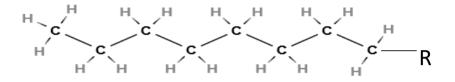
- Aqueous Film Forming Foam (AFFF)
 - Military installations
 - Civilian airports
 - Petroleum refineries
 - Fire fighting training area
- Production and Manufacturing
 - Surfactants, resins, molds, plastics
 - Textiles/leather/paper products
 - Chrome plating

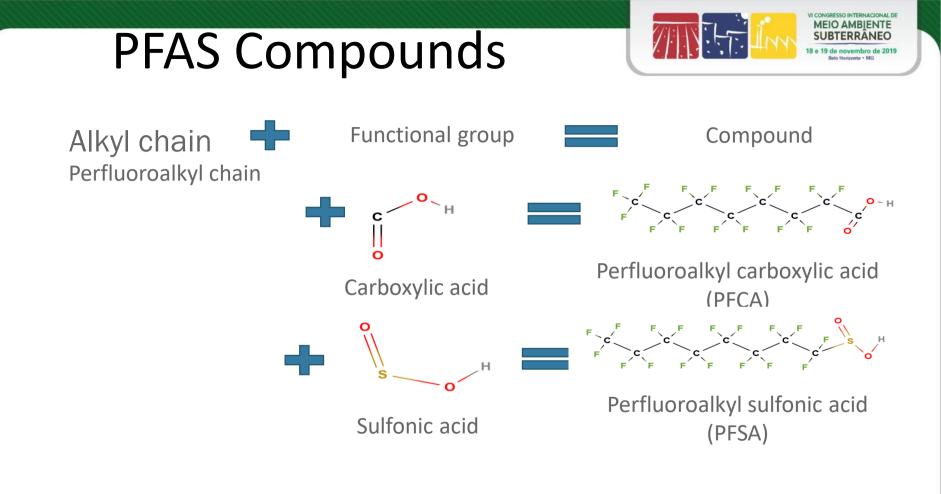

- Landfills
 - Consumer products
 - Industrial waste
 - Biosolids applied as cover
- Waste Water Treatment Plants
 - Influent may not be treated (or may be transformed) and end up in effluent
 - Biosolids created in treatment process may contain PFAS

Residential/Consumer Products

- Cosmetics
 - Make-up
 - Sunscreen
 - Floss
- Consumer products
 - Teflon
 - Gore-tex
 - Scotchguard
 - Any stain- or water-resistant fabrics, furniture, or carpets

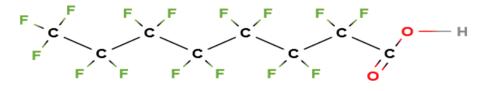
- Food
 - Pathway to food contamination is unclear; could be from biosolids, contaminated water, aerosols etc
- Food wrappers/containers
 - Microwave popcorn bags
 - Take out containers
 - Pizza boxes

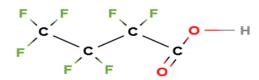

MEIO AMBIENTE SUBTERRÂNEO


e novembro de 2

(Copyright © Environmental Working Group, www.ewg.org

PFAS = <u>Poly</u>- and <u>perFluoroAlkyl</u> <u>Substances</u>





Most PFAS are surfactants T O Hydrophilic 0×0 Ο charged head ш. neutral tail LL. Hydrophobic ы. air water water peau peau

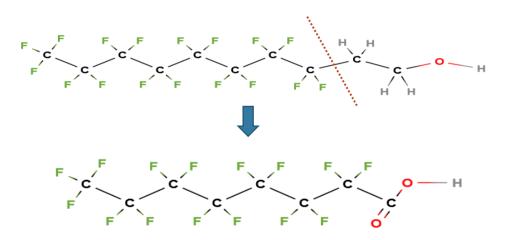
PFAS CompOunds are very persistent in the environment and in the human body – meaning they don't break down and they can accumulate over time.

Longer-chained PFAS:

- Less mobile
- More bioaccumulative
- More data

Shorter-chained PFAS:

- More mobile
- Less bioaccumulative
- Less data

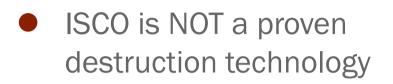


Regulations:

- EPA Health Advisory = 70 ppt PFOS+PFOA
- Not an MCL
- Not enforceable
- Regulated at state level
- Future potential MCL, designation as hazardous substances, potential site re-opener

Polyfluoroalkyl substances are precursors to perfluoroalkyl substances!

8:2 fluorotelomer alcohol, a polyfluoroalkyl substance


Perfluorooctane carboxylic acid (PFOA)

Sulfluramid

- Sulfluramid is a pesticide that used to be made by Dupont in the U.S.
- It breaks down into PFAS and several other chemicals within weeks.
- Ongoing production and use of sulfluramid in Brazil despite widespread knowledge of its dangers.

Remediation Technologies

 However, some defluorination technologies show promise in pilot scale demos

MEIO AMBIENTE

SUBTERRANEC

Remediation Technologies

- Separation technologies also show promise.
- Separation is a function of hydrophobicity
- Requires regeneration or destruction of spent GAC/IX resin → treatment trains
- Novel adsorbents in development

UNIVERSITY OF WYOMING

Thank you!

