

Mine Waste Cover Systems and Control of Acid Mine Drainage in South American Tropical Zones

Michael Milczarek and Jason Keller

GeoSystems Analysis, Inc.

Belo Horizonte, 19 de Novembro de 2019

Mine Closure Challenges

- Ingress of oxygen and water into waste
- Control long-term generation of Acid Mine Drainage (AMD)
 - Release into surface water and groundwater
 - Inability to revegetate

Design to Keep Water Out!

- Characterization methods
- Appropriate cover system design
- Modeling
- Monitoring

Controlling Factors

- Mine waste characteristics (waste rock, heap leach, tailings)
- Geochemical conditions
- Climate
- Net infiltration rates (percolation below the zero flux plane)

Mine Waste Characteristics

Mine Waste Types

- Tailings Impoundments
 - Fluvial depositional process, highly layered systems
 - Lower permeability layers generally dominate flow
 - Consolidation and deformation over time can be significant
- Waste Rock
 - High percentage of rock/gravel particles can create macropores and preferential flow may dominate unsaturated flow conditions
 - Significant storage capacity in waste rock material
- Heap Leach
 - Similar to waste rock but near-saturated conditions
 - Crushed vs ROM
 - Greater consolidation and variable permeability

Post-Closure Tailings Draindown Rates

MEIO AMBIENTE

SUBTERRÂNEO

1.1.7.

Waste Rock

- VI CONCESSO INTERNACIONAL MEIO AMBIENTE SUBTERRÂNEO 18 e 19 de novembro de 201 Beio Horizonte - MG
- Large range of physical and hydraulic properties
 - Geology dependent
 - Orders of magnitude differences in Ksat

Waste Rock Solution and Air Flow

Heap Leach Solution and Air Flow (Sulfide Ore)

Drawing Not To Scale

Waste Geochemical Characteristics

- Sulfide vs non-sulfide mineral deposits
- Acid generation potential vs neutralization potential (AGP/ANP)
- Potentially Acid Generating (PAG) minerals can result in:
 - High acid generation potential (and acidity)
 - High plant available metals (i.e. arsenic)
 - Precipitation of secondary minerals
 - Biologically mediated (pH <5)
 - Reactions primarily in < 5 mm fraction

WASTE ACIDITY

novembro de 201 HIGH pH CIRCUMNEUTRAL LOW pH POTENTIAL Moderate to AGP Moderate Risk High B High Risk HIGH Potentially High cally High Potentially High Salinity/Phytotoxicity hity/Phytotoxicity Salinity/Phytotoxicity GENERATING **NODERATE** Moderate Risk Moderate Risk **High Risk** AGP Potentially High otentially High pically High Salinity/Phytotoxicity Phytotoxicity xicitv ACID OW AGP Moderate Risk Low **Bisk/Benign** Low Rich Benign Potentially High Moderate Salinity oderate Salinity Salinity/Phytotoxicity

RESSO INTERNACIONAL DE

EIO AMBIENTE JBTERRÂNEO

Direct Reclamation of Mine Waste

Direct Revegetation (non-PAG, circumneutral)

Semi-arid Climate

Biosolid/green waste amended circumneutral

• Typically low plant fertility

//// h-T-

SUBTERRANEC

- Lack of organic matter and microbiota
- Can be saline even if neutralized
- May need to add amendments
- Use of pioneer species

Direct Revegetation in Wet Climates

Ok Tedi Sand Tailings Stockpile

Rehabilitation

- Challenges:
 - Not like natural system
 - Higher pH
 - Higher salinity
 - Much greater depth to groundwater
 - Much coarser
 - Use only native species

Niter

MEIO AMBIENTE

SUBTERRANEC

Revegetation Plans and Trials

2014-2016

- Greenhouse & Field Trials
- Refine plant species selection
- Effects of compost amendments on plant growth
- Refine seeding and planting methods

<u> 2017 - present</u>

- Long-term monitoring program
 - Ecosystem Function Analysis
- Train OTML staff
- Data analysis & reporting
- Create GIS geo-database

Climate and Design of Cover Systems

Design of Cover Systems

- Identify potential borrow materials
- Characterize waste and cover material
 - Physical and hydraulic properties
 - Geochemical characteristics
 - Ability to support vegetation
- Develop estimates of net infiltration rates
 - Estimates of natural groundwater recharge rates
 - Use of analytical and numerical models
 - Initial tailings drainage (up to decades) much greater than ET cover net percolation

MINE CLOSURE HYDROLOGIC CYCLE

INFILTRATION

EVAPOTRANSPIRATION

REDISTRIBUTION

BUNDEF

6

PRECIPITATION

Top Soil

Drainage Layer

Low Permeability Clay/Silt

Mine Waste

ET Cover – Seasonal storage and release of soil water

Fall or Dry Season Soil is initially dry

MEIO AMBIENTE

SUBTERRÂNEO

ET Cover – Seasonal storage and release of soil water

Winter or Wet Season

MEIO AMBIENTE

SUBTERRÂNEO

Rain and/or snowmelt gradually infiltrates, increasing soil water to field capacity

ET Cover – Seasonal storage and release of soil water

Spring or late Wet Season

MEIO AMBIENTE

SUBTERRÂNEO

Wetting front moves deeper. Net infiltration is most likely in this season

ET Cover – Seasonal storage and release of soil water

Late Spring or Early Dry Season

MEIO AMBIENTE

SUBTERRÂNEO

As temperature warms, evaporation increases and vegetation transpires stored soil water

ET Cover – Seasonal storage and release of soil water

Late Summer or Dry Season

MEIO AMBIENTE

SUBTERRÂNEO

Continued transpiration by vegetation removes stored soil water from root zone

Cover System Design Factors

Available Water Holding Capacity (loams ideal)

Soils may provide from less than 3 cm to more than 8 cm per meter AWC

Considerations

MEIO AMBIENTE

SUBTERRÂNEO

Gravelly soils help reduce erosion (but low AWC)

Vegetation key to controlling drainage

Semi-arid species rooting can go deep (several meters)

Barrier Cover System Types

• Multi-layer barrier/ET Cover Systems

Barrier Cover Systems

Agru-turf/ ClosureTurf

Measured Net Infiltration Rates

- Semi-arid southwestern USA
 - Uncovered waste rock: 15% to 25% of annual precipitation (AP)
 - ET Cover over waste rock: 1% to 5% of AP
 - ET Cover over tailings < 1% to 3% of AP
- Rocky Mountains USA
 - Uncovered waste rock: > 50% of AP
 - Covered waste rock and tailings: Depends on cover system, up to 40% of AP
- High elevation Andes (< 3500 m)
 - Uncovered waste rock: > 50% AP
 - Covered waste rock: Depends on cover system: up to 40% of AP

Cover Systems are Dynamic

- Richmond Hill, South Dakota
- Average Net Infiltration^{100.0} 90.0
 (as % of AP) 80.0
 - 1998-2000 = 22%
 - 2001-2005 = 32%
 - 2006-2016 = 34%

MEIO AMBIENTE

SUBTERRÂNEC

1.1.

Net Infiltration in ET Covers: P/PET

- Monolayer ET Cover Systems
 - P/PET < 0.4, Low percolation
 rate 3 mm/yr
 - P/PET > 0.8, High percolation rates
- North American climates, need more data from South America

Annual P/PET

Apiwantragoon P, Benson CH, Albright WH. 2015. Field Hydrology of Water Balance Covers ⁴or Waste Contain^شent. J. Geotech. and Geoenvironmental Eng. 141 (2): 04014101-1-20. DOI: 10.1061/(ASCE)GT.1943-5606.0001195

Climatic Cycles (PDO/AMO and

CONGRESSO INTERNACIONAL DE

de novembro de 201

MEIO AMBIENTE SUBTERRÂNEO

Material Characterization

Physical and Hydraulic Properties

- Geologic logging and sample collection
- Physical properties
 - Particle size distribution, Atterberg limits (USCS classification)
 - Bulk density
- Hydraulic properties
 - Saturated hydraulic conductivity (Ksat)
 - Moisture retention characteristics (MRC)
 - Unsaturated hydraulic conductivity (function)
- Geochemical properties for revegetation
 - ABA and extractable elements for mine waste
 - ABA and soil fertility for borrow material

Representative Sample Collection

- Back-hoe test pits or augering
- Geologic logging of profile (ASTM 2488)

1.1.7.

MEIO AMBIENTE

SUBTERRANEC

- Collection of samples for lab testing:
 - Particle size distribution for calibration of geologic logs
 - Samples for moisture content, bulk density, hydraulic properties
- Dig as many as possible!

Particle Size Distribution

- Image Processing (Split-net)
 - Good for > 1/2-inch
- Lab testing < 3 inch

MEIO AMBIENTE

SUBTERRÂNEO

de novembro de

Calibration of Lab and Field PSD

MEIO AMBIENTE

SUBTERRÂNEO

1.1.7.

Poorly Graded vs Well Graded

VI CONGRESSO INTERNACIONAL DE MEIO AMBIENTE SUBTERRÂNEO

Slide 44

T.L.T.

19 de novembro de 2019 Bela Horizonte : MG

a. Soil Moisture Retention Characteristic Curve

Moisture Retention/ Pressure Potential Relations

Gravel Effects on Saturated Hydraulic Conductivity (from Milczarek et al., 2006)

MEIO AMBIENTE

SUBTERRÂNEO

1.5

Gravel Effects on Moisture Retention

Characteristics (from Keller et al., 2010)

Particle Diameter (mm)

Gravel Effects on MRC

(from Keller et al., 2010)

Soil Matric Potential (- cm water)

Gravel Effects on Unsaturated

VI CONGRESSO INTERNACIONAL DE MEIO AMBIENTE SUBTERRÂNEO 18 e 19 de novembro de 2019 Bel Mojente - MG

Modeling

Some Numerical Tools

- Unsaturated/saturated
 - MODFLOW USG (3D, USGS and others)
 - MODFLOW SURFACT (3D, USGS and others)
 - FEFLOW (3D, Diersch, 2002)
 - HYDRUS-1D/2D/3D (Simunek et al., various 1998-2016)
 - VADOSE/W, SEEP/W (1D/2D/3D, GEO-SLOPE International)
 - SV FLUX (Soil Vision)
 - TOUGH2 (3D, Pruess et al., 1999)
 - STOMP (3D, White and Oostrom 2000)
 - MACRO 5.1/5.2 (1D, Larsbo et al., 2005, 2012)
- Selection of model depends on complexity of problem
 - <u>Keep It Simple Stupid</u> (KISS)
 - Each model has its own set of weaknesses
 - Advisable to start in 1D or 2D

Modeling Needs

- Hydraulic properties (Ksat and VG parameters)
 - All cover system layers including the waste
- Proper domain and boundary conditions
 - At least 10 m deep for arid/semi-arid climates, free drainage
 - Long-term climate record for P and PET
 - Simulate from site record CLIMGEN (Stöckle and Nelson, 1999)
 - https://power.larc.nasa.gov/data-access-viewer/
 - Evapotranspiration (EEFlux, <u>https://eeflux-level1.appspot.com/</u>)
 - Rooting depth and Leaf Area Index (i.e. MODIS)
 - Estimated runoff (pre-process depending on code)
- Initial conditions establish initial steady-state

Post-Closure Tailings Draindown Rates

MEIO AMBIENTE

SUBTERRÂNEO

1.1.7.

Predicted Effect of Increasing

Cover Thickness

MEIO AMBIENTE

SUBTERRÂNEO

1.0E-06

Predicted Effect of Low

1.0E-08

1.0E-07

1.0E-05 1.0E-04 Compacted Clay Saturated Hydraulic Conductivity (cm/s)

Long-term Stability and Erosion Control

Erosion Control

- Besides water treatment, major post-closure cost
- Climatic specific
 - Semi-arid climates with potential for high intensity precipitation (i.e. > 5 cm/hr) need high percent of rock on side-slopes
 - Temperate climates need a mix of rock and vegetation
 - High precipitation climates can rely on vegetation

Natural Side-Slopes (Sonoran Desert)

Natural Side-Slopes (Sonoran Desert)

Erosion Test – 10 cm in 2 hours

10 Years after reclamation

Side-Slope Challenges

- Placement of geosynthetics on slopes > 2.5(H):1(V)
- Placement of materials on slopes > 2.0(H):1(V)

Long-term Tests and Monitoring

Long-term Tests and Monitoring

- Reclamation of large-scale disturbance needs large-scale and long-term data
- Recommend 7 to 10 years (minimum)
- Test plots or full-scale reclamation
- Monitoring parameters
 - Climate
 - Vegetation
 - Soil moisture dynamics (at least pressure potential)
 - Erosion/Landscape function
- Deconstruction at end

Cumulative Difference from Historic Precipitation

MEIO AMBIENTE SUBTERRÂNEO

novembro de 20

FMI Morenci weather data from Townsite weather station; historic monthly average from Clifton AZ, 1893-2010

Sensor Nest Monitoring

Rooting Assessment

Tailing/Cover Contact

pH and EC Profiles

(from Milczarek et al., 2011)

Closing Thoughts

Meio Amble SUBTERRÂI 18 e 19 de novembro Belo Horizonte • M

- Need careful characterization
 - Representative samples
 - Appropriate methods lab and field
- Use site-specific knowledge
 - Vegetation, natural side-slope conditions, recharge rates
- Use of models
 - All models are bad, some are useful compare alternatives
- Need to monitor for long-term
- Lots of work needs to be done on better understanding of covers in tropical environments, side-slope reclamation

Muito Obrigado!